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Overview

Initial motivation: A verified compiler from Imp to LImp
Extension: Translating programs with I/O
New semantics for verification: Trace semantics
Lifting of Imp and LImp programs in a more general setting:

Regular Programs

Imp

LImp

Context-Free Programs

⊆

⊆

⊆
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Imp

Short review: Imp

Example

(if x < 0 then x ::= − x else SKIP) ; r ::= x

c , d ::= a | c ; d | if b then c else d | while b do c

Example

s := (if bpos then ainv else askip) ; ares

[x 7→ −1], s −→ [x 7→ −1], ainv ; ares −→ [x 7→ 1], ares
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Stack Semantics

Example

s := (if bpos then ainv else askip) ; ares

[x 7→ −1] [(if bpos then ainv else askip) ; ares ],

−→ [x 7→ −1] [if bpos then ainv else askip, ares ]

−→ [x 7→ −1] [ainv , ares ]

−→ [x 7→ 1] [ares ]

−→ [x 7→ 1, r 7→ 1] []

Decomposition of sequences on the stack
Empty stack as indicator for termination
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Observable Actions

Example

s := IN x ;

if (bpos) then ainv else askip;

OUT x

}
if

[], [s]→ [], [IN x , if] ? -1−−→ · · · → [x 7→ 1], [OUT x ] ! 1−−→ [x 7→ 1], []

Observable actions require to track traces in addition to final state

Resulting traces: {. . . , -2.2, -1.1, 0.0, 1.1, . . . }
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Non-Termination
Reactive system:

Example

w := while b¬0 do IN x ;
if (bpos) then ainv else askip;

OUT x

[x 7→ 42], [w]→ [x 7→ 42], [IN x ,w] -1−−→ . . .
1−−→ . . .

5−−→ . . .
5−−→ . . .

Infinite traces should be observed
⇒ Partial traces / Prefixes

Resulting traces: {ε, . . . , -1, -1.1, -1.1.5, -1.1.5.5, . . . }
End marker for terminating traces:
⇒ -1.1.5.5.0.0.# ∈ TSP(w , [x 7→ 42])
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Abstraction from States

Recording all actions instead of only effects allows to reconstruct
I final states
I effects

Tests are modelled as partial identities on states

wstart ain; if; aout

T

if; aout

ainv ; aout

askip ; aout

aout
b¬0

b¬0

ain

bpos

bpos

ainv

askip

aout
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wstart ain; if; aout

T

if; aout

ainv ; aout

askip ; aout

aout
b¬0b¬0

b¬0b¬0

ainain

bpos

bposbpos

ainv

askipaskip

aoutaout

b¬0 IN x bpos askip OUT x b¬0

[x 7→ 42] [x 7→ 42] [x 7→ 0] [x 7→ 0] [x 7→ 0] [x 7→ 0] [x 7→ 0]

?0 !0

[x 7→ 1]

[x 7→ 2]

...
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Regular Programs (RP)

Connection with regular expressions

s, t ::= ∅ | ε | a | s; t | s + t | s∗

Imp programs as regular programs:

if b then s else t  b; s + b; t

while b do s  (b; s)∗; b

Example

(b¬0; ain; (bpos ; ainv + bpos ; askip); aout)
∗; b¬0
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Trace Semantics for RE (with stacks)

ε/T #/[ ]

ξ/T
a.ξ/a::T

ξ/s::t::T
ξ/(s;t)::T

ξ/s::T
ξ/(s+t)::T

ξ/t::T
ξ/(s+t)::T

ξ/T
ξ/s∗::T

ξ/s::s∗::T
ξ/s∗::T

Abort-rule for partial traces
Marker-rule for terminal traces
Two rules for ∗

I Rule to finish
I Rule to iterate

ξ executable on σ := ξ = a0.a1. . . . an

∧ ∃σ0, σ1, . . . , σn+1,∀i ≤ n, exec(σi , ai , σi+1) ∧ σ0 = σ
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Linear Imp
s, t ::= a ; s | if b then s else t | fixX . s | X

LImp no subset of regular programs

Example

fixX . IN x ; ifx < 0 then OUT z
else fixY . IN y ; ify < 0 then z := x + z ; X

else x := y ∗ x ; Y

Xstart if 1

Y

OUT z T

if 2

x := y ∗ x ; k

z := x + z ; l

IN x x < 0
x < 0

IN y y < 0
y < 0x := y ∗ x

OUT z

z := x + z
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Context-Free Programs (CFP)

s, t ::= ε | a | s; t | s + t | fixX . s | X

ξ/sX
fixX . s ::T

ξ/(fixX . s)::T

Not only regular languages:

Example

s := fix x . ε+ a; x ; b

∀n ∈ N. a
nbn#/s
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Can express Context-Free Grammars
Example

A 7→ AB | a
B 7→ AC | b
C 7→ AC | c

Example: a a c

A

A

a

B

A

a

C

c

fix
A +

;

A fix
B +

;

A fix
C +

;

A C
c

b

a

fixA.A; (fixB.A; (fixC .A;C + c) + b) + a

Regular and Context-Free Programs 15 / 27



Tail-Recursive Programs (TRP)

tail-recursive s := All bound variables in s occur in end position

regular s := Every fix in s is of the form fixX . ε+ t;X or fixX .X

linear s := Every sequence in s is of the form a; s

Regular programs (RP) are
tail-recursive (especially Imp)
Linear programs (LP) are
tail-recursive (especially LImp)

CF

TRP

RP LP
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From Tail-Recursive Programs to Regular Programs

Tail-recursive programs can be translated in regular programs

Example
fix x . c ; x + b

fix x .

+

bc

;

x

c∗b

Intuition: Every fix can be split up in a part that will iterate and one which
will finish
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Regularizer - Example

R : trp→ (V × rp) list× rp

Example

fix x . a; (x + b)

R

a

+

bx

=
_ : a; b

x : a; ε

R (fix x . a; (x + b)) = _ : (a; ε)∗; a; b
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Normalizing expressions

Goal: Equations which allow to transform TRP stepwise to RP
Searched: Adequate equivalence ≈ which allows the following
transformations:

For fixX . s split up the function body s in a disjunction of the form

s ≈ s ′ + (t; x)

where x is not in the free variables of s ′ and t contains no free variables
With

t∗ = fixX . ε+ t;X

We show:

fixX . s ≈ t∗; s ′
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Program Equivalence

s ≈ t := ∀ξ. ξ/[s]↔ ξ/[t]

Problem: ≈ not congruent for fix

Example

a; x ≈ a; y but fix x . a; x 6≈ fix x . a; y

Possible solutions:
Redefining equivalence with environment α : V → cfp:

s ≡ t := ∀α ξ. ξ/s,α ↔ ξ/t,α

Axiomatic characterization with a depth counter:

s ≡n t := s ≈ t and only calls to variables > n may differ
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Linearizer
Linear context-free programs (LP) as a generalization of LImp:

LImp s, t ::= a ; s | if b then s else t | fixX . s | X

LP s, t ::= ε | a; s | s + t | fixX . s | X

Translation from TRP to LP:

L(_,_) : trp→ lp→ lp
L(ε, u) = ε

L(x , u) = x
L(a, u) = a; u
L(s; t, u) = L(s,L(t, u))
L(s + t, u) = L(s, u) + L(t, u)
L(fix x . s, u) = fixX .L(s, u) non-capturing
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Correctness Proof

Verification with respect to ≈

s ≈ t := ∀ξ. ξ/[s]↔ ξ/[t]

Strong substitution lemma needed which allows to substitute under fix:

s trp→ L(sx
t , u) = L(s, u)xL(t,u)

Proof by induction on s trp
Correctness Lemma:

(∀s ∈ T , trp s)→ ξ1/T → ξ2/[u]→ ξ3/T ′ → ξ1.ξ2.ξ3/(L(T ,u))::T ′

L(T , u) := foldr (λ(s, cont). L(s, cont)) u T
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Program Equivalence

Verification of translation with program equivalence

s ≡ t := ∀α ξ. ξ/s,α ↔ ξ/t,α

Characteristic equations to push sequences inwards:

ε; u ≡ u
(s; t); u ≡ s; (t; u)

(s + t); u ≡ s; u + t; u
(fixX . s + (t;X )); u ≡ fixX . (s; u) + (t;X )

if X is not in the free variables of s u and t
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Linearizer - Example

Example

(fix x . a; (x + b)); c

a

+

bx

; c ≡

+

a

b

a

x

; c ≡

+

a

b

c

a

x

L

a

+

bx

c =

L

a

+

bx c
=

a

+

L b cL x c

=

a

+

b

c

x
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Summary

Imp Limp

RP LP

TRP

CFP

≡

Linearizer

Regularizer

≡

Compiler
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Results

Results obtained:
Linearizer for TRP
Correctness of the
TRP-Linearizer with trace
semantics
Regularizer

Results wanted:
Correctness of Regularizer
Correctness of characteristic
fix-equations
Correctness results with stronger
semantics (≡)
Sound equational system for ≡

Regular and Context-Free Programs 26 / 27



Outlook

Correspondence of context-free programs and context-free languages
(together with Jana)
Connection between partial trace equivalence and big-step semantics
Decidability of prefix languages for tail-recursive programs
Equational deduction system for tail-recursive programs
Extending context-free programs with mutual recursion
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4 Appendix
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Tail-Recursion

trc x ε trc x a trc x y
trc x s trc x t

trc x (s + t)

x 6∈ F(s) trc x t
trc x (s; t)

trc x s
trc x (fix y . s)

x ∈ F(s)
trc x s
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