
From Trace Semantics for Imperative Programs to
Regular and Context-Free Programs

Second Bachelor Seminar Talk

Clara Schneidewind
Advisor: Prof. Dr. Gert Smolka

computer science

saarland
university

July 17th, 2015

Regular and Context-Free Programs 1 / 27

Content

1 Introduction
Overview
Previous Work
Motivation

2 Context-Free and Regular Programs
Tail-Recursive Programs
Regularizer
Linearizer

3 Outlook

Regular and Context-Free Programs 2 / 27

Overview

Initial motivation: A verified compiler from Imp to LImp
Extension: Translating programs with I/O
New semantics for verification: Trace semantics
Lifting of Imp and LImp programs in a more general setting:

Regular Programs

Imp

LImp

Context-Free Programs

⊆

⊆

⊆

Regular and Context-Free Programs 3 / 27

Previous Work
Michael J. Fischer and Richard E. Landner
Propositional Dynamic Logic of Regular Programs
Journal of Computer and System Sciences, 1979

Dexter Kozen and Frederick Smith
Kleene Algebra with Tests: Completeness and Decidability
Springer, 1996

Joost Winter, Marcello M. Bonsangue, and Jan Rutten
Context-Free Languages, Coalgebraically
Springer, 2011

Karl R. Abrahamson
Succinct Representation of Regular Sets Using Gotos and Boolean Variables
Journal of Computer and System Sciences, 1987

Paul Morris, Ronald A. Gray and Robert E. Filman
GOTO Removal Based On Regular Expressions
Journal of Software Maintenance Research and Practice, 2000

Regular and Context-Free Programs 4 / 27

Imp

Short review: Imp

Example

(if x < 0 then x ::= − x else SKIP) ; r ::= x

c , d ::= a | c ; d | if b then c else d | while b do c

Example

s := (if bpos then ainv else askip) ; ares

[x 7→ −1], s −→ [x 7→ −1], ainv ; ares −→ [x 7→ 1], ares

Regular and Context-Free Programs 5 / 27

Stack Semantics

Example

s := (if bpos then ainv else askip) ; ares

[x 7→ −1] [(if bpos then ainv else askip) ; ares],

−→ [x 7→ −1] [if bpos then ainv else askip, ares]

−→ [x 7→ −1] [ainv , ares]

−→ [x 7→ 1] [ares]

−→ [x 7→ 1, r 7→ 1] []

Decomposition of sequences on the stack
Empty stack as indicator for termination

Regular and Context-Free Programs 6 / 27

Observable Actions

Example

s := IN x ;

if (bpos) then ainv else askip;

OUT x

}
if

[], [s]→ [], [IN x , if] ? -1−−→ · · · → [x 7→ 1], [OUT x] ! 1−−→ [x 7→ 1], []

Observable actions require to track traces in addition to final state

Resulting traces: {. . . , -2.2, -1.1, 0.0, 1.1, . . . }

Regular and Context-Free Programs 7 / 27

Non-Termination
Reactive system:

Example

w := while b¬0 do IN x ;
if (bpos) then ainv else askip;

OUT x

[x 7→ 42], [w]→ [x 7→ 42], [IN x ,w] -1−−→ . . .
1−−→ . . .

5−−→ . . .
5−−→ . . .

Infinite traces should be observed
⇒ Partial traces / Prefixes

Resulting traces: {ε, . . . , -1, -1.1, -1.1.5, -1.1.5.5, . . . }
End marker for terminating traces:
⇒ -1.1.5.5.0.0.# ∈ TSP(w , [x 7→ 42])

Regular and Context-Free Programs 8 / 27

Abstraction from States

Recording all actions instead of only effects allows to reconstruct
I final states
I effects

Tests are modelled as partial identities on states

wstart ain; if; aout

T

if; aout

ainv ; aout

askip ; aout

aout
b¬0

b¬0

ain

bpos

bpos

ainv

askip

aout

Regular and Context-Free Programs 9 / 27

wstart ain; if; aout

T

if; aout

ainv ; aout

askip ; aout

aout
b¬0b¬0

b¬0b¬0

ainain

bpos

bposbpos

ainv

askipaskip

aoutaout

b¬0 IN x bpos askip OUT x b¬0

[x 7→ 42] [x 7→ 42] [x 7→ 0] [x 7→ 0] [x 7→ 0] [x 7→ 0] [x 7→ 0]

?0 !0

[x 7→ 1]

[x 7→ 2]

...

Regular and Context-Free Programs 10 / 27

Regular Programs (RP)

Connection with regular expressions

s, t ::= ∅ | ε | a | s; t | s + t | s∗

Imp programs as regular programs:

if b then s else t b; s + b; t

while b do s (b; s)∗; b

Example

(b¬0; ain; (bpos ; ainv + bpos ; askip); aout)
∗; b¬0

Regular and Context-Free Programs 11 / 27

Trace Semantics for RE (with stacks)

ε/T #/[]

ξ/T
a.ξ/a::T

ξ/s::t::T
ξ/(s;t)::T

ξ/s::T
ξ/(s+t)::T

ξ/t::T
ξ/(s+t)::T

ξ/T
ξ/s∗::T

ξ/s::s∗::T
ξ/s∗::T

Abort-rule for partial traces
Marker-rule for terminal traces
Two rules for ∗

I Rule to finish
I Rule to iterate

ξ executable on σ := ξ = a0.a1. . . . an

∧ ∃σ0, σ1, . . . , σn+1,∀i ≤ n, exec(σi , ai , σi+1) ∧ σ0 = σ

Regular and Context-Free Programs 12 / 27

Linear Imp
s, t ::= a ; s | if b then s else t | fixX . s | X

LImp no subset of regular programs

Example

fixX . IN x ; ifx < 0 then OUT z
else fixY . IN y ; ify < 0 then z := x + z ; X

else x := y ∗ x ; Y

Xstart if 1

Y

OUT z T

if 2

x := y ∗ x ; k

z := x + z ; l

IN x x < 0
x < 0

IN y y < 0
y < 0x := y ∗ x

OUT z

z := x + z
Regular and Context-Free Programs 13 / 27

Context-Free Programs (CFP)

s, t ::= ε | a | s; t | s + t | fixX . s | X

ξ/sX
fixX . s ::T

ξ/(fixX . s)::T

Not only regular languages:

Example

s := fix x . ε+ a; x ; b

∀n ∈ N. a
nbn#/s

Regular and Context-Free Programs 14 / 27

Can express Context-Free Grammars
Example

A 7→ AB | a
B 7→ AC | b
C 7→ AC | c

Example: a a c

A

A

a

B

A

a

C

c

fix
A +

;

A fix
B +

;

A fix
C +

;

A C
c

b

a

fixA.A; (fixB.A; (fixC .A;C + c) + b) + a

Regular and Context-Free Programs 15 / 27

Tail-Recursive Programs (TRP)

tail-recursive s := All bound variables in s occur in end position

regular s := Every fix in s is of the form fixX . ε+ t;X or fixX .X

linear s := Every sequence in s is of the form a; s

Regular programs (RP) are
tail-recursive (especially Imp)
Linear programs (LP) are
tail-recursive (especially LImp)

CF

TRP

RP LP

Regular and Context-Free Programs 16 / 27

From Tail-Recursive Programs to Regular Programs

Tail-recursive programs can be translated in regular programs

Example
fix x . c ; x + b

fix x .

+

bc

;

x

c∗b

Intuition: Every fix can be split up in a part that will iterate and one which
will finish

Regular and Context-Free Programs 17 / 27

Regularizer - Example

R : trp→ (V × rp) list× rp

Example

fix x . a; (x + b)

R

a

+

bx

=
_ : a; b

x : a; ε

R (fix x . a; (x + b)) = _ : (a; ε)∗; a; b

Regular and Context-Free Programs 18 / 27

Normalizing expressions

Goal: Equations which allow to transform TRP stepwise to RP
Searched: Adequate equivalence ≈ which allows the following
transformations:

For fixX . s split up the function body s in a disjunction of the form

s ≈ s ′ + (t; x)

where x is not in the free variables of s ′ and t contains no free variables
With

t∗ = fixX . ε+ t;X

We show:

fixX . s ≈ t∗; s ′

Regular and Context-Free Programs 19 / 27

Program Equivalence

s ≈ t := ∀ξ. ξ/[s]↔ ξ/[t]

Problem: ≈ not congruent for fix

Example

a; x ≈ a; y but fix x . a; x 6≈ fix x . a; y

Possible solutions:
Redefining equivalence with environment α : V → cfp:

s ≡ t := ∀α ξ. ξ/s,α ↔ ξ/t,α

Axiomatic characterization with a depth counter:

s ≡n t := s ≈ t and only calls to variables > n may differ

Regular and Context-Free Programs 20 / 27

Linearizer
Linear context-free programs (LP) as a generalization of LImp:

LImp s, t ::= a ; s | if b then s else t | fixX . s | X

LP s, t ::= ε | a; s | s + t | fixX . s | X

Translation from TRP to LP:

L(_,_) : trp→ lp→ lp
L(ε, u) = ε

L(x , u) = x
L(a, u) = a; u
L(s; t, u) = L(s,L(t, u))
L(s + t, u) = L(s, u) + L(t, u)
L(fix x . s, u) = fixX .L(s, u) non-capturing

Regular and Context-Free Programs 21 / 27

Correctness Proof

Verification with respect to ≈

s ≈ t := ∀ξ. ξ/[s]↔ ξ/[t]

Strong substitution lemma needed which allows to substitute under fix:

s trp→ L(sx
t , u) = L(s, u)xL(t,u)

Proof by induction on s trp
Correctness Lemma:

(∀s ∈ T , trp s)→ ξ1/T → ξ2/[u]→ ξ3/T ′ → ξ1.ξ2.ξ3/(L(T ,u))::T ′

L(T , u) := foldr (λ(s, cont). L(s, cont)) u T

Regular and Context-Free Programs 22 / 27

Program Equivalence

Verification of translation with program equivalence

s ≡ t := ∀α ξ. ξ/s,α ↔ ξ/t,α

Characteristic equations to push sequences inwards:

ε; u ≡ u
(s; t); u ≡ s; (t; u)

(s + t); u ≡ s; u + t; u
(fixX . s + (t;X)); u ≡ fixX . (s; u) + (t;X)

if X is not in the free variables of s u and t

Regular and Context-Free Programs 23 / 27

Linearizer - Example

Example

(fix x . a; (x + b)); c

a

+

bx

; c ≡

+

a

b

a

x

; c ≡

+

a

b

c

a

x

L

a

+

bx

c =

L

a

+

bx c
=

a

+

L b cL x c

=

a

+

b

c

x

Regular and Context-Free Programs 24 / 27

Summary

Imp Limp

RP LP

TRP

CFP

≡

Linearizer

Regularizer

≡

Compiler

C
on

te
xt
-f
re
e
La

ng
ua
ge
s

R
eg
ul
ar

La
ng

ua
ge
s

Regular and Context-Free Programs 25 / 27

Results

Results obtained:
Linearizer for TRP
Correctness of the
TRP-Linearizer with trace
semantics
Regularizer

Results wanted:
Correctness of Regularizer
Correctness of characteristic
fix-equations
Correctness results with stronger
semantics (≡)
Sound equational system for ≡

Regular and Context-Free Programs 26 / 27

Outlook

Correspondence of context-free programs and context-free languages
(together with Jana)
Connection between partial trace equivalence and big-step semantics
Decidability of prefix languages for tail-recursive programs
Equational deduction system for tail-recursive programs
Extending context-free programs with mutual recursion

Regular and Context-Free Programs 27 / 27

4 Appendix

Regular and Context-Free Programs 28 / 27

Tail-Recursion

trc x ε trc x a trc x y
trc x s trc x t

trc x (s + t)

x 6∈ F(s) trc x t
trc x (s; t)

trc x s
trc x (fix y . s)

x ∈ F(s)
trc x s

Regular and Context-Free Programs 29 / 27

	Introduction
	Overview
	Previous Work
	Motivation

	Context-Free and Regular Programs
	Tail-Recursive Programs
	Regularizer
	Linearizer

	Outlook
	Appendix
	Appendix

