From Trace Semantics for Imperative Programs to
Regular and Context-Free Programs

Second Bachelor Seminar Talk

Clara Schneidewind
Advisor: Prof. Dr. Gert Smolka

SAARLAND
UNIVERSITY L
I —

COMPUTER SCIENCE

July 17th, 2015

Regular and Context-Free Programs 1/27

Content

@ Introduction
@ Overview
@ Previous Work
@ Motivation

© Context-Free and Regular Programs
@ Tail-Recursive Programs
o Regularizer
@ Linearizer

© Outlook

Regular and Context-Free Programs 2/27

Overview

Initial motivation: A verified compiler from Imp to LImp
Extension: Translating programs with 1/0
New semantics for verification: Trace semantics

Lifting of Imp and Limp programs in a more general setting:

Imp
<
Regular Programs C Context-Free Programs
c

LImp

Regular and Context-Free Programs 3/27

Previous Work

@ Michael J. Fischer and Richard E. Landner
Propositional Dynamic Logic of Regular Programs
Journal of Computer and System Sciences, 1979

@ Dexter Kozen and Frederick Smith
Kleene Algebra with Tests: Completeness and Decidability
Springer, 1996

[§ Joost Winter, Marcello M. Bonsangue, and Jan Rutten
Context-Free Languages, Coalgebraically
Springer, 2011

@ Karl R. Abrahamson
Succinct Representation of Regular Sets Using Gotos and Boolean Variables
Journal of Computer and System Sciences, 1987

@ Paul Morris, Ronald A. Gray and Robert E. Filman
GOTO Removal Based On Regular Expressions
Journal of Software Maintenance Research and Practice, 2000

Regular and Context-Free Programs 4 /27

Imp

Short review: Imp

Example
(if x < 0 then x := — x else SKIP) ; r ::= x
¢c,d :== a | c;d | if bthen celsed | while bdo c |
Example

s 1= (if bpos then aj,, else agp) ; ares

[x — —1],s — [x — —1], 3inv; ares — [x — 1], res

Regular and Context-Free Programs 5 /27

Stack Semantics

Example
s 1= (if bpos then aj,, else agp) ; ares
[x — —1] [(if bpos then aj,, else asp) ; ares],
— [x = —1] [if bpos then aj,, else agip, ares)
— [X — _1] [ainw ares]
— [x— 1] [ares]
— [x—=1,r—1] (]

@ Decomposition of sequences on the stack

e Empty stack as indicator for termination

Regular and Context-Free Programs 6 /27

Observable Actions

Example

s = IN Xx;

if (bpos) then aj,, else agp; .
I
OUT x

I.0s] = [N x, if] =5 -+ — [x — 1], [0UT x] — [x — 1],]]

Observable actions require to track traces in addition to final state

Resulting traces: {...,-2.2,-1.1, 0.0, 1.1, ...}

Regular and Context-Free Programs 7/27

Non-Termination

Reactive system:

Example

W= while b_g do IN x:
if (bpos) then aj,, else agp;
OuUT x

[Xl—>42],[W]—)[Xl—>42],[|NX,W]—-1—>... EEEO N A

o Infinite traces should be observed
= Partial traces / Prefixes

@ Resulting traces: {e,...,-1,-1.1,-1.1.5,-1.1.5.5,... }
@ End marker for terminating traces:
= -1.1.55.0.0.# € TSp(w, [x — 42])

Regular and Context-Free Programs 8 /27

Abstraction from States

@ Recording all actions instead of only effects allows to reconstruct

» final states
» effects

@ Tests are modelled as partial identities on states

Regular and Context-Free Programs 9 /27

[x = 2]

[X?—>1]

b_o IN x askip OUT x bo

/\/\/\/\/\/\

[x —42] [x—42] [x—0 [x—0 [x—0] [x—0 [x~0]

70 10
Regular and Context-Free Programs 10 / 27

Regular Programs (RP)

Connection with regular expressions

s,t i=0 | e] a| st] s+t | s* |

Imp programs as regular programs:

if bthenselse t ~ b;s+ b; t
while bdo s ~ (b;s)*; b

Example

(b—|0; din; (bpos; ainy + bpos; askip); aout)*; b—|0

Regular and Context-Free Programs 11 / 27

Trace Semantics for RE (with stacks)

- L 5/7_ f/s::t::T f/g;;T
¢/T #/11 alla:T §/(sit):T §f(s+t):T
g/t::T 5/7_ 5/5::5*::T
5/(s+t)::T f/s*::T f/s*;;T |

@ Abort-rule for partial traces
@ Marker-rule for terminal traces
@ Two rules for *

» Rule to finish
» Rule to iterate

£ executable on o := £ = ag.a;....a,
A Jog,01,...,0n41, Vi < n,exec(oj, ai,0i41) ANog = 0

Regular and Context-Free Programs 12 /27

Linear Imp

s,t u== a;s | if bthenselset | fixX.s | X J

LImp no subset of regular programs
Example
fix X.IN x; ifx < 0 then OUT z

elsefixY.INy; ify <Othenz:=x+2z; X

elsex:=yx*xx;Y

start

Z:=X+z

Regular and Context-Free Programs 13 /27

Context-Free Programs (CFP)

s,;t = € | a| st | s+t | fixXes | X J

§/51'-)i§<X.s::T
5/(fixX.s)::T

Not only regular languages:

Example

s:= fixx.et+ax: b

vne N, a"b"#/s

Regular and Context-Free Programs

Can express Context-Free Grammars

Example
A AB | a .
........ > fIX
B~ AC | b AT T n
Cr AC | ¢ T~
Example: a a c A B — fix .
3 —~
A b
Z N A fix
A B c” T4
| /N TS
a A C PN ¢
| | A C
a c
fix A. A; (fix B.A; (fix C.A; C+c)+ b)+ a

Regular and Context-Free Programs 15 / 27

Tail-Recursive Programs (TRP)

tail-recursive s := All bound variables in s occur in end position)

regular s := Every fix in s is of the form fix X. e + t; X or fix X. X J

linear s := Every sequence in s is of the form a;s J

CF

@ Regular programs (RP) are TRP

tail-recursive (especially Imp)
@ Linear programs (LP) are ‘

tail-recursive (especially LImp)

Regular and Context-Free Programs 16 / 27

From Tail-Recursive Programs to Regular Programs

Tail-recursive programs can be translated in regular programs

Example
fixx.c;x+ b

c
I
I

X

4

Intuition: Every fix can be split up in a part that will iterate and one which
will finish

Regular and Context-Free Programs 17 / 27

Regularizer - Example

R :trp — (V x rp) list x rp J

Example
fixx. a; (x + b) }

| A H

R (fixx.a;(x+ b)) = _ (& e)*;a;b

Regular and Context-Free Programs

Normalizing expressions

@ Goal: Equations which allow to transform TRP stepwise to RP

@ Searched: Adequate equivalence = which allows the following
transformations:

For fix X. s split up the function body s in a disjunction of the form

s~ s +(t;x) J

where x is not in the free variables of s’ and t contains no free variables
With

t* =fixX.e+t;: X J

We show:

fix X.s ~ t*: ¢ J

Regular and Context-Free Programs 19 / 27

Program Equivalence

s~ ti=ve Efls] & &/[1]

Problem: = not congruent for fix

Example

ax~ay but fixx. a;x # fixx. a; y

Possible solutions:

@ Redefining equivalence with environment o : V — cfp:

s=t:= Vaé&. f/s,oz ~ g/t,oz

@ Axiomatic characterization with a depth counter:

s=,t:= s~ tandonly calls to variables > n may differ

Regular and Context-Free Programs

20 / 27

Linearizer

Linear context-free programs (LP) as a generalization of Limp:

Limp s,t u== a;s | if bthenselset | fixX.s | X)

LP s,t n= €| as|s+t|fixX.s|X J

Translation from TRP to LP:

L(.,): trp—>|p—>|p
L(e,u) =
L(x,u) =
L(a,u) =
L(s;t,u) = C(s L(t,u))
L(s+ t,u) = L(s,u) + L(t, u)
L(fixx.s,u) = fixX. L(s, u) non-capturing

Regular and Context-Free Programs 21 /27

Correctness Proof

Verification with respect to ~

s~ t=ve §/ls] & &/[1]]

Strong substitution lemma needed which allows to substitute under fix:

s trp = L(s74) = £(5, Ufi(euy J

Proof by induction on s trp
Correctness Lemma:

(Vse T,trps) — §1/T - fQ/[u] N §3/T/ N {1.52.53/([’(7-,”))::7—/ J

L(T,u) := foldr (A(s,cont). L(s,cont)) u T)

Regular and Context-Free Programs 22 /27

Program Equivalence

Verification of translation with program equivalence

s=t:= Vaé&. f/s,oz &~ g/t,oz

Characteristic equations to push sequences inwards:

(s; t) u ; s; (t; u)
(s+t)hu=s,u+tu
(fixX.s+ (t; X)); u = fix X. (s; u) + (£; X)

if X is not in the free variables of s v and t

Regular and Context-Free Programs 23 /27

Linearizer - Example

Example
(fixx. a; (x + b)); ¢
a + +
| N N
Y c = T T C = ‘T T
X b X b X b
|
C

a a a

| | |

r + c = + _ +
/\ r /\ c T~ /\
X b X b

Regular and Context-Free Programs

Summary

Context-free Languages

Regular Languages

Regular and Context-Free Programs

Results

Results obtained: Results wanted:
e Linearizer for TRP e Correctness of Regularizer
o Correctness of the o Correctness of characteristic
TRP-Linearizer with trace fix-equations
semantics o Correctness results with stronger
@ Regularizer semantics (=)

@ Sound equational system for =

Regular and Context-Free Programs 26 / 27

Outlook

Correspondence of context-free programs and context-free languages
(together with Jana)

Connection between partial trace equivalence and big-step semantics
Decidability of prefix languages for tail-recursive programs

Equational deduction system for tail-recursive programs

Extending context-free programs with mutual recursion

Regular and Context-Free Programs 27 /27

@ Appendix

Regular and Context-Free Programs

Tail-Recursion

trcxs trex t
tre x € trc x a tre x y trc x (s + t)
x & F(s) tre x t trcx s x € F(s)
trc x (s; t) trc x (fixy. s) trc x s

Regular and Context-Free Programs

	Introduction
	Overview
	Previous Work
	Motivation

	Context-Free and Regular Programs
	Tail-Recursive Programs
	Regularizer
	Linearizer

	Outlook
	Appendix
	Appendix

